
International Journal of Scientific & Engineering Research Volume 12, Issue 3, March-2021 248
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Dead Lock Prevention And Hybrid Scheduling
Algorithm

Zarwash Gulrez Khan, Marium Rehan

Abstract- the main focus of this research paper is the prevention and avoidance of deadlock. Multiple responsibilities and jobs like Input output,
memory, and process and file management are the basic functionality of the operating System. A program of multiple instructions executed at run time is
basically an operating and its most prioritized function is the management of processes. In a single processor system only on process can b executed at
a time while the other process must wait for the CPU to be free and can be rescheduled. The objective of multi programming is the most effective way to
provide multi tasking to maximize or increase the CPU utilization by running the process all the time. There are scheduling algorithms in abundance like
FCFS, JSF, SRT, RR and a lot more for process scheduling. This report will evaluate and calculate these scheduling algorithms on the basis of their
performance which include its 5 factors explained in the report, in a multi process surrounding and will propose or put forward a new hybrid schedule
algorithm of preemptive and non preemptive nature as well as (HRRRN) known as “highest response round ratio next proposed by Brinch Hansen to
avoid limitations of SJF algorithm” to find the best solution for CPU scheduling based on NOVEL algorithm and compare the performance of our hybrid
scheduling algorithm to the previously created algorithms. The most vital objective the proposed algorithm is intended to do is increase the performance
of CPU as compared to novel algorithm by minimizing waiting and turnaround time for a number of processes.

Index Term: Scheduler, State Diagrams, CPU-Scheduling, Performance, Operating System, scheduling, First come first serve, Round Robin, Shortest
Remaining Time, Shortest Job First, pre emptive and non preemptive, throughput, turnaround, mutex locks.

—————————— ——————————

I. INTRODUCTION

HE term Deadlock is simply defined as a condition where one
process or many processes are blocked forever as they do not
satisfy the requirements. These processes remain in the deadlock

until and unless some kind of external force such as an operator of an
operating system takes some action to get them out of the deadlock
state for better operation of CPU deadlock must be prevented.
We have listed some techniques to avoid it on the another hand CPU
scheduling is a relatively simple idea which is important because in a
single processor system the process must wait before being executed
for the completion of some Input/Output request resulting in the
waste or loss processor time as it left idle. This problem is solved using
CPU scheduling as the CPU keeps multiple processes in memory at a
time and when a process is in waiting the Central Processing Unit is
allocated to another process which is ready to execute by the operating
system making it a multiprogramming environment. Once a process
has to wait the CPU is taken over by another process and this
continues. [1]

II. DEADLOCK:

The term Deadlock is simply defined as a condition where one process
or many processes are blocked forever as they do not satisfy the
requirements. These processes remain in the deadlock until and unless
some kind of external force such as an operator of an operating system
takes some action to get them out of the deadlock state. Moreover,
deadlock can be explained considering an example by taking two
processes such as A and B, deadlock can occur when there are two
processes and two resources. Consider the two resources as p1 and p2.
A resource cannot be released by a process which is waiting for a
request. Consider that p1 is designated to A and p2 is designated to B,
now if suppose A request for p2 and B request for p1. Due to this it
will result in a deadlock situation for A and B.
Deadlock is also defined as the study of the logic of the process
interactions in the computer system. [2]

.
Fig 1. Process Deadlock

A. Conditions of Deadlock:

Deadlocks are caused or achieved by the following conditions
mentioned below:
It is the most important condition to achieve deadlock. Mutual
exclusion can be explained by that at least one source must be situated
in a mode which is not shared by any other process. If any of the other
processes requests for this resource then it must wait until that
resource is released. Mutual exclusion can also be explained that when
one process is in the critical section which is accessing some shared
resources no other process must be in that critical section accessing any
of those shared resources. [1]

T

————————————————

 Zarwash Gulrez Khan is currently pursuing Bachelor’s degree
program in Computer Science from Bahria University Karachi
Campus, Karachi, Pakistan. PH-03008961863. E-mail:
zarwashgulrezkhan@gmail.com, 02-134182-
015@student.bahria.edu.pk

 Marium Rehan is currently pursuing Bachelor’s degree program in
Computer Science from Bahria University Karachi Campus, Karachi,
Pakistan. PH-03062730592. E-mail: mariumrehan096@gmail.com,
02-134182-068@student.bahria.edu.pk

IJSER

http://www.ijser.org/
mailto:zarwashgulrezkhan@gmail.com
mailto:02-134182-015@student.bahria.edu.pk
mailto:02-134182-015@student.bahria.edu.pk
mailto:mariumrehan096@gmail.com
mailto:02-134182-068@student.bahria.edu.pk

International Journal of Scientific & Engineering Research Volume 12, Issue 3, March-2021 249
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

 Hold And Wait:
By Hold and Wait it is defined as the condition that when a process is
holding one resource and waiting for at least one resource which is at
that time held by some other process. [1]

 No Preemption:
By No preemption it is defined that when a process takes a resource or
is holding on a resource and the process request has been granted then
no other process can take that resource from that process until that
process after availing the resource releases it. [1]

 Circular Wait:
Circular wait is simple defined as when a set of processes such as {W0,

W1, W2, W3, …, WN} must exist in such a way that if every P[i] I
waiting for the W[(i+1) % (N+1)] . These conditions mainly implies
for the hold and wait condition but if the processes are deal separately
it is easier to deal with them. [1]

A. Deadlock Handling:

The handling of deadlock is not only essential but important. There are
various ways of deadlock handling but there are three ways which are
the most main deadlock handling ways. The three main ways of
deadlock handling are mentioned below: [1]

i. Preventing Deadlock And Avoidance:
The most primary way for deadlock prevention and avoidance is to
not allow your system to enter into a state which is deadlocked. [1]

ii. Detecting Deadlock And Recovery:
Deadlocks can be detected and prevented by aborting the process or
limiting the resources not to be shared whenever a deadlock has been
detected. [1]

iii. Ignoring The Problem At All:
If a deadlock appear or occur during a long span of time for example if
a deadlock occur once in 365 days so it is good to let them occur and
reboot the system when it is necessary to do. It is better not to incur the
constant overhead or the system performance penalties which are
allied with the deadlock avoidance or exposure techniques. This
technique is used by both “Windows and UNIX” operating systems.
[1]

 For the need to avoid deadlock, the system must know all
the information related to the processes. The information
regarding the resources which the process needs or may
need in the future. That need may range from an effortless
worst case limit to a complete request of the resource and
then the release plan for each process. It all depends on the
algorithm being used. [1]

 The detection of a deadlock is an easy process although the
recovery of the deadlock requires either to abort the process
or to preempt the resources. [1]

 Deadlock if not prevented or detected then it will cause the
whole system to slow down; the number of processes
waiting to access the resource which is stuck by the process
will increase in number. This slowdown can be
differentiated from a common system slowing or hanging
when an actual time process needs heavy computing. [1]

B. Deadlock Prevention:

Preventing deadlock is necessary and important. The most common
ways of deadlock prevention are as follows:

i. Mutual Exclusion:
The resources which are shared such as the read only files do not

cause deadlocks. The resources such as “printers, tape drives” which
require access by an individual process is reason for deadlock so if a
deadlock arise the OS must support it. [1]

ii. Hold and Wait:
A process does not go into the hold and wait condition if it prevents
itself from holding one or more than one resource while at the same
time waiting for one or the other. This can occur due to certain
conditions such as: [1]

 When all the processes are requesting all the resources at the
same time this results in the wasteful use of the system cause
the process my need a certain resource at that time but does
not need any resource later. [1]

 The resources hold up by the process must be released
before it requests for the new resource, and then it will
acquire the released source again along with the new ones at
the time of request. This may lead to problem when a
process partially completes the problem with the help of that
resource and then fails to get it back after reallocating it.

 The above mentioned methods can lead to starvation if a
process needs one or more than one popular resource.

iii. No Preemption:

 Deadlocks can be prevented with the help of preemption of process
resource allocation. There are different approaches to process
preemption that are mentioned below:

 The first approach is that the previously seized process is to be
release once a process gets in waiting, this leads to the process
to require the old resources while requesting for the new ones.
[1]

 The second approach that when a process request for a
resource and it is not available, then the system search that
any other process has that resource or not and they already
blocked or rejected waiting for some other resource. If that
resource is found then some of their resources get preleased or
freed and are provided to the process waiting for the
resources as they are added to those resources.

 The above mentioned approaches can be implemented on
saved and restored resources. These resources include
“registers”, “memory” but do not include printers and tape
drives. [1]

iv. Circular Wait:
Circular Wait is also considered as a deadlock Prevention. To evade or

remove circular wait it is essential to assign numbers to every
resource and to make certain that every process request resource in
increasing or decreasing sort. For example to request a resource such
as Rn then a process must release first all Rl such as l>=n. The
immense confront in this prevention is to determine the virtual order
or arrangement of resources. [1]

C. Deadlock Evasion:
The basic aim of deadlock evasion is to not let the deadlock occur ever
again or to prevent it from happening at least once. To avoid deadlocks
we need to gain more information regarding the process and to low
device utilization. The following are some techniques to avoid
deadlocks. [1]

i. Secure State:
If a resource requested by the process is allocated without entering into
a deadlock situation then it is said to be a safe or secure state. A state is
only secure if and only if there is a secure series of processes such as
{W0, W1, W2,…, WN} such that every resource for the Wl can be

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 3, March-2021 250
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

granted to the resources which are currently allocated to Wl and to all
processes to Wn where m< l. It is necessary for a safe sequence to exist
otherwise the system is not safe which can cause deadlock.

Fig 2. Safe and unsafe state

ii. Resource Distribution Graph Algorithm:

 If the resources have only particular cases of resources then
the deadlock states can be identified by means of cycles in
the respective graphs. [1]

 Now in this circumstances the safe states can only be
identified by enhanced the resource distribution graph with
the help of “claim edges”. These are represented by “dash
lines” which points from the process to the resource which it
may request for future use. [1]

 This technique only works if all the claim edges are inserted
to the graph for any process previous to that process can ask
for any kind of resource.

 At the time process claims for a request the claim edge of Pl -
>Rn is then converted to a request edge. Then whenever a
source is freed the assignment is relapsed back to the claim
edge. [1]

 The above mentioned approach works by denying the
requests that would result in the production of the cycles in
the resource allocation graph, taking all the claim edges into
effect. [1]

The method can be explained by considering an example such that
for example what occurs when resource R2 is requested by P2

Fig 3. Fig 4.

Figure 3: Demonstrates Resource allocation graph for deadlock evasion
and Figure 4: Demonstrates a risky and unsafe state in a “resource

allocation graph”.

III. CPU SCHEDULING

CPU scheduling is a relatively simple idea which is important because
in a single processor system the process must wait before being
executed for the completion of some I/O request resulting in the waste
or loss processor time as it left idle. This problem is solved using CPU
scheduling as the CPU keeps multiple processes in memory at a time
and when a process has to wait the CPU is allocated to another process
which is ready to execute by the operating system making it a multi
programming environment. Once a process has to wait the CPU is
taken over by another process and this continues. [2]

Fig 5. Process execution in CPU

The CPU is totally dependent on the property of process that is
execution or wait. The process starts with CPU burst followed by I/O
burst and then again followed by CPU burst which a request for
terminate execution. Once the process is in wait the operating system
selects one process in the ready queue and allocates the CPU to it. [2]
The schedulers that co-exist in a complex operating system caught up
in a “multitasking system”, with each deciphering a scheduling trouble
for each region of operating system functionality: the “long-term
scheduler”, “mid-term scheduler”, and “short-term scheduler”. [3]

Fig 6. Process Life Cycle

a. Long-Term Scheduler:
The long scheduler also known as the admission scheduler decides
which process should be brought o the ready queue moreover during
the attempt of a process execution the long scheduler decides whether
to admit or delay it. The “long term” scheduling is carried out in the
start when the new process is formed as shown in diagram above. The
responsibility of the scheduler is to decide whether process should be
added from “NEW state queue” to “READY state queue” and
supervise the amount of processes in the “READY state” queue as if
the amount of processes in ready state are higher than in the ready
queue, it became impossible for the OS or processor to preserve “long
lists”, “context switching and dispatching increases”. So it permits
only inadequate or limited amount or quantity of processes into the
ready queue. [1] [3]

b. Medium-Term Scheduler:
This type of scheduler is a component of the swapping function that is
the transfer of data from memory to processor as the main memory
frees OS checks the list of suspended processes and decides which one
should be swapped in or transferred to on the basis of property,
memory and resources required. It basically performs the swapping in
or transfer function among the exchanged processes. [1]

c. Short-Term Scheduler:
“CPU scheduler” or “Short term Scheduler” is called or invoked every

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 3, March-2021 251
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

time an event is raised that may escort to interruption or disturbance
of the recent process in execution moreover its duty is to find a process
in the ready state and allocates the CPU to it [1]. Making scheduling
decisions is less common and frequent for the long-term and mid-term
schedulers than short-term scheduler. The short-term scheduler can be
either “preemptive” (blocking) or “non-preemptive” (non-blocking). A
preemptive scheduler forces any process to exit the CPU when it
decides to assign another process to the CPU. A non-preemptive
scheduler cannot force or oblige any process to exit the Central
Processing Unit. [3]

This report will demonstrate the computed resource allocations and
processing time algorithm more over comparing the already defined
algorithm with our hybrid designed algorithm to decrease the waiting
and throughput time and enhancing the efficiency of the algorithm.
Our key intention or goal was to use the mixture of computing system
algorithm to reduce the cost of both the hardware and software, while
increasing efficiency at the same time. [3] The rest of the paper content
is as follows: Part-IV shows “CPU scheduling” goals/ aims and
performance criteria. Part V shows introduction to existing scheduling
algorithms like RR, SRT, and SJF etc. Part-VI Explains the proposed
hybrid Algorithm. Part -VII Result Part-VIIII will conclude the report
with future work and references.

II. Aims And Performance Criteria Of
Scheduling

A. Aims Of Scheduling:
The main or vital goals and objectives the scheduling ought to perform
are defined below;

 Fairness: to avoid the process from starvation .i.e. equal
chance to execute must be given to every process. [1]

 Throughput: speed or rate at which processes are
accomplished or accomplished per unit of time. [1]

 Predictable: A particular work should execute in the same
amount or quantity of time with the same cost independent
of how heavy the system is.

 Overhead: A particular segment of system resources
invested as overhead to improve overall performance of the
system. [1]

 Resources: the resources of the system must be kept busy

by the scheduling algorithm. [1]

 Indefinite Postponement: Avoiding indefinite or not
known delay of any process so that each process can be
executed in certain or predictable amount of the time.

 Priority: preference should be given to processes on the
basis of priority. [1]

B. Scheduling Criteria:

The criteria used by the algorithm for CPU or process scheduling are
as follows;

 CPU Utilization: CPU consumption can vary from 0 to 100
percent. In a genuine or actual system, it should vary from
“40 percent (for a lightly loaded system) to 90 percent (for a
heavily used system)” as the CPU should always be kept
busy. [2]

 Throughput: the work done on CPU can be measured as
the number of processes that are completed per time unit are
called throughput. This rate may be one process per 60
minutes for longer processes but for short communication, it
may be ten processes per one second. [2]

 Turnaround Time: also used as (TAT) is the period from
the time of submission of a process to the time of completion
of a process. It is the sum of the time or the total amount of
time spent by a process in “waiting to get into memory,
waiting in the ready queue, executing on the CPU, and
doing I/O”. [2]

 Waiting Time: also used as (AT) The scheduling algorithm
does not influence or change the amount of time during
which a process executes or does Input/Output but it affects
only the quantity of time that a process is in waiting in the
queue. The time spent waiting in the ready queue is simply
defined as waiting time. [2]

 Response Time: also used as (RT). Turnaround time may
not be the best measure in some systems. A process can
produce some output quite early and can continue
computing new results at the same time the earlier results
are being output to the user. [2]

IV. CPU SCHEDULING ALGORITHM:

A. Types Of Scheduling Algorithm:

The CPU scheduling is defined as the process of deciding that which
process which is present in the queue must be firstly assigned to the
CPU. The types of scheduling algorithm are pre-emptive and non-pre-
emptive scheduling which are divided on the basis of their handling of
clock interrupts. [3]

 i. Pre-Emptive Scheduling: A run able scheduling

approach. When a process is started by the CPU it can be then
suspended temporarily for a certain period of time. This act has given
the name pre-emptive scheduling. A pre-emptive scheduler is defined
as a type of scheduler which forces any process to leave the CPU when
it allocates another process to the CPU. [3]

 ii. Non–Pre-Emptive Scheduling: It is the opposite of the

pre-emptive scheduling. When a CPU starts a process then it cannot be
suspended. In this the response time are predictable and the handling
of processes are done fairly as even a higher priority job cannot de
allocate the waiting job [3].

 iii. Priority Allocation System: The main function of the

priority allocation system is to select of higher priority not of a low
priority. It not only schedules with the help of priority but also with
execution history and age. Other ways that are used to assign priorities
to processes are mentioned below:[3].

 Internal or Dynamic: The priorities are allocated according to
specific algorithms. [3]

 External or Statically: The allocation of priorities is with the
help of an external system manager before it is scheduled to
the processor. [3]

 Hybrid: The assignment of the priority is done with the help
of both internal and external schemes.[3]

v. Timer Interruption: It is considered as the vital process
which protects the processes from getting trapped in a loop
which is infinite which causes the system hanging. At the time
of the start of the process the timer begins and counts in the
interval. When the time interval expires the process is then
completed in CPU. With the scheduling decision a new
process is made in the processor. [3]

B. Pre –Defined Scheduling Algorithm:

The problem of assigning the CPU those processes which are in the
ready queue, it is done by the CPU scheduling algorithm. Several
types of CPU scheduling algorithm are there. In this section we have
explained several of them;

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 3, March-2021 252
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

 First-Come, First-Served Scheduling:

The first-come, first-served (FCFS) scheduling algorithm is the simplest
form that is that the process that requests the CPU first is assigned the
CPU first. The FIFO queue easily manages the practice of the FCFS.
The entry of the process in the” ready queue, its PCB” is connected on
the end of queue. The time when the CPU is idle, it is then assigned to
the head of queue and the process in the execution state is removed.
The “FCFS code” is very simple and easy to write and to understand;
on the other hand the average waiting time of the “FCFS policy” is
extensive and lengthy in comparison. The list of the processes
mentioned below that arrives at time 0 with respect to the CPU burst
length given in milliseconds. [2]

Process Burst time
P1 24
P2 3
P3 3

If the above mentioned process enters the FCFS algorithm it will be
scheduled in the following order show through the diagram below
with time taken by each process to complete and execute. [2]

Fig 6. Gandt chart of First come first serve

The above diagram shows that the time taken by P1 is 0 milliseconds
where as the p2 took 24 milliseconds and 27 milliseconds were taken
by P3 which makes the average time (0+24+27)/3=17 milliseconds.
Where as if the order of the process would be P2, P3, P1 then the
average time is (0+3+6)/3=3 milliseconds. This shows that the average
waiting time of an “FCFS policy” is not least and may vary largely if
the processes CPU burst times vary to a great extent. [2] The problem
faced by this algorithm is that it requires the previous knowledge for
the time it had required for the completion of work for a process. It is
fully free from the issue of starvation which occurs in an active or
heavy computer structures with a number of small processes are
executing which disastrous for time-sharing systems. [1]

 Shortest-Job-First Scheduling:

 The shortest job-first (SJF) scheduling algorithm is a totally different
approach which associates with each process the length of the
process’s next CPU burst. This algorithm schedules the process on the
basis of the length of process burst and if two processes are having
equal process burst any one of them is allocated to the CPU. The
assignment to the process that contains the smallest next CPU burst is
done when the CPU is free [2]. Consider the following example

Process Burst time
P1 6
P2 8
P3 7
P4 3

The pictorial representation will be like;

Fig 7. Gandt chart of shortest Job First

The above diagram shows that the time taken by P1 is 3 milliseconds
where as the p2 took 16 milliseconds and 9 milliseconds were taken by
P3 and lastly pr started with 0 milliseconds which makes the average
time (0+3+9+16)/4=7 milliseconds where as if we used the FCFS
algorithm average time would be (0+6+15+22)/4=10.25 milliseconds
which means the SJF takes relatively less time as compared to FCFS.

The SJF scheduling algorithm gives the least average waiting time for a
given set of processes.

 The Round-Robin (RR) Scheduling:
Timesharing systems have implemented the technique of round robin.
It is comparable to the “FCFS scheduling” algorithm but contains some
additional features which facilitate the system to switch between the
processes. A time slice is defined as the element of time whose length
is from 10 to 100 milliseconds. The ready queue is called the circular
queue. The traversing of the ready queue is done by the ready queue
in which the CPU is assigned to each of the process for a time period
which is up to 1 quantum time. The implementation of RR scheduling
is done by keeping the ready queue as a FIFO queue of the processes.
The processes which are latest are added at the end of the ready queue.
The first process selected by the CPU scheduler from the ready queue
and it puts a timer for the suspension after 1 time quantum and
transmits the process. [2] Consider the following example;

Process Burst time
P1 24
P2 3
P3 3

The p1 gets 4 ms if quantum takes 4 ms moreover it requires 20 ms
more so it is finished the CPU is given to the next process in the queue
after the first quantum. Process P2 quits before its time quantum
expires as it does not require 4 ms. The Central Processing Unit is then
assigned to the subsequent process which is P3. Once CPU
acknowledged one time quantum it is then returned to process1 for an
extra time quantum. The RR schedule pictorial representation is
described below: [2]

Fig 8. Gandt chart of Round Robin

Process1 hang around for 10 - 4 = 6 ms where as Process2 waits for 4
ms and P3 waits for 7 ms making the average waiting time is
(6+4+7)/3 = 5.66 milliseconds. No process is allocated the CPU for
more than 1 time quantum in a row in Round Robin scheduling
algorithm. [2]

 Shortest Remaining Time (Srt):
 The processes which have the shortest remaining time are picked up
by the scheduler and moved in the front of the queue in this manner it
is quite similar to the SJT. When a process or the other process that is
shorter even is being executed by the CPU an interruption is
encountered at that time which due to which the process is divided
into two parts which creates additional context switching. This
additional overhead causes amplification in the response as well in the
waiting times. The longer processes are affected by the process due to
which it is difficult to maintain a deadline. The starvation is
experienced by the SRT when multiple small processes are run by the
CPU due to which it is not widely used. [3]

 Multi-Level Feedback Queue (Mlfq):
The most popular scheduling algorithm in the interactive system is
MLFQ because efficiency and response times are deal by this
algorithm. The processes in this algorithm are always accepting their
previous execution history. This is usually used when it is difficult to
calculate the running time of the process. A distinct queue is preserved
stating each priority stage in this algorithm and each process is given a
particular time represented as a single quantum time when the front is
reached. The priority is decreased by one if the process used the
quantum time without blocking then its priority and for the next CPU
burst its quantum is doubled. [1]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 3, March-2021 253
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

 Highest Response Ratio Next (Hrrn):
 The “aging priority” is put into practice with the help of this
algorithm as it is designed in a way that a process waits until its
priority is amplified or increased and then it execute on the basis of
high priority which is calculated using the following formula;
“Priority = (w + s) / s”
 Where: w is equal to the time spent in waiting by a process for the
processor and s is equal to predictable service time. It is cooperative for
the processes which are long and will age by waiting and hence their
priorities will increase time by time allowing the shorter jobs to
execute as they already have a higher priority. [3]

V. THE CHOSEN HYBRID CPU SCHEDULING

ALGORITHMS:

I. Preemptive & Non Preemptive Algorithm:

The first hybrid scheduling algorithm we will study was proposed by
Anil Kumar Gupta. We find a part or factor known as “Total Elapsed
Time (TET) is calculated by the sum of burst time (B.T.) and arrival
time (A.T.) which is TET = B.T. + A.T”. The Total Elapsed Time is
allocated to each and every process and on its basis processes are
arranged in down to up order. The execution of processes is on the
basis of TET value, i.e. the shorter the TET value the first it is executed
with next shorter TET value is executed next. By bearing in mind the
burst time .Chosen Computer Processing Unit scheduling algorithm
decreases or lowers waiting time whereas on the other hand increases
CPU utilization and throughput. The functioning method of our
algorithm: [1]

 Find the list of processes, “their arrival time (A.T.) and burst
time (B.T.)”.

 The TET is calculated by A

 The processes are arranged in ascending order that is down
to up based on TET.

 We assume or suppose that Computer Processing Unit (AT)
is having value equal to ZERO

 Scheduler picks Total Elapsed Time which is the
most minimum. [1]

 Check whether the process arrival and CPU
arrival time is equal or less by comparing them. [1]

 If step 2 is neither equal nor less then lowest TET
is taken and step 2 is repeated till burst time [1]of
all processes is = to 0. [1]

 2 Processes which have the same total elapsed
time and step 2 is satisfied then the process is run
depending on the low process id. [1]

i. Calculations:

 Turnaround Time : Arrival Time (A.T) - Completion Time
(C.T) [1]

 Waiting Time :Turnaround Time - Burst Time [1]

 Average (WAT): (Total waiting time) / (total no of
processes). [1]

 Average (TAT) turnaround time: (Total turnaround time) /
(total no of processes). [1]

 Total Elapsed time: arrival time + burst time.[1]
Comparison of algorithms would be made on the basis of above
calculation on the following two examples;

Table 1 (Example-1)

Process Id Arrival time Burst
Time

P0 4 2

P1 1 4

P2 2 6

P3 3 1

Step 1: Table 2(TET) =AT+BT:

Process Id AT BT TET

P0 4 2 6

P1 1 4 5

P2 2 6 8

P3 3 1 4

Step#2: Table 3 (sort on the basis of TT in ascending order)

Process Id AT BT TET

P3 3 1 4

P1 1 4 5

P0 4 2 6

P2 2 6 8

Step#3: Table 4(calculate CT, TAT, WAT and TET)

Process Id AT BT TET CT TAT WAT

P3 3 1 4 6 3 2

P1 1 4 5 5 4 0

P0 4 2 6 8 4 2

P2 2 6 8 14 12 6

Total 23 10

The chart will be of the following type;

Fig 9. Gandt chart Example 1

Calculation Of Average Turnaround And Waiting Time: [1]

 Avg. TAT= tot TAT/ no. process = 23/4 = 5.75

 Avg. WAT= tot WAT/ no. process = 10/4 = 2.5

Table 5 (Example-2)

Process Id Arrival time Burst Time

P0 1 4

P1 2 6

P2 3 10

P3 4 5

P4 5 20

P5 6 1

Step#1: Table 6 (Calculation of (TET) =AT+BT)

Process Id AT BT TET

P0 1 4 5

P1 2 6 7

P2 3 10 8

P3 4 5 9

P4 5 20 13

P5 6 1 25

Step#2: Table 7 (sort on the basis of TT in ascending order)

Process Id AT BT TET

P0 1 4 5

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 3, March-2021 254
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

P1 2 6 7

P2 3 10 8

P3 4 5 9

P4 5 20 13

P5 6 1 25

Step#3: Table 8(calculate CT, TAT, WAT and TET)

Process Id AT BT TET CT TAT WAT

P0 1 4 5 5 4 0

P1 2 6 7 12 6 5

P2 3 10 8 11 9 3

P3 4 5 9 17 13 8

P4 5 20 13 27 24 14

P5 6 1 25 47 42 22

total 98 52

The chart will be of the following type;

Fig 10. Gandt chart Example 2

Calculation of average turnaround and waiting time: [1]

 Avg. TAT= tot TAT/ no. process = 98/6 = 16.33

 Avg. WAT= tot WAT/ no. process = 52/6 = 8.6

i. Highest Response Round Ratio Next
(Hrrrn)Algorithm:

The following algorithm was introduced by Brinch Hansen to avoid
the limitation and constraints of shortest job next (SJN) algorithm.
Moreover it is composed of a combination of two algorithms Highest
Response Ratio Next (HRRN) and Round Robin (RR). The estimated
time taken to execute a job and time spend waiting in ready state tells
the priority of job. This prevents starvation as the jobs with larger
priority will wait longer making it possible for the short processes to
execute first. The working of the algorithm is defined below; [4]

 For all the process not executed completely the response
time is calculated using formula [4]

 Response time = RT=(Waiting Time + Run time)/(Runtime)
[4]

 The process with maximum response time will execute first.
[4]

 The Round Robin execution technique is implemented for
process execution. [4]

 The Quantum of System is calculated by Quantum = (Avg.
Burst time) / 1.5. [4]

Table 9 (Example 01)

Process Id Burst time Arrival time Priority

P0 35 3 3

P1 92 0 4

P2 12 4 0

P3 38 1 2

P4 56 5 1

Step#1: Table 10 (calculate waiting time)

Process Id Burst time Arrival time Priority WT

P0 35 3 3 71

P1 92 0 4 141

P2 12 4 0 27

P3 38 1 2 108

P4 56 5 1 142

Step#2: Table 11 (calculate turnaround time for all the algorithms)

 Algorithm HRRRN SJF

Process id BT AT WT TAT WT TAT

P0 35 3 71 106 101 136

P1 92 0 141 233 0 92

P2 12 4 27 39 88 100

P3 38 1 108 149 138 176

P4 56 5 142 198 172 228

Total 489 722 499 732

Average 97.8 144.4 99.8 146.4

Calculations:

 Entered time Quanta = 12

 Avg. Waiting time of Proposed Algorithm = 97.8

 Avg. Turnaround time of Proposed Algorithm = 144.4

 Avg. Waiting time of Priority Algorithm = 126.8

 Avg. Turnaround time of Priority Algorithm = 173.4

 Avg. Waiting time of SJF Algorithm = 99.8

 Avg. Turnaround time of SF Algorithm = 146.4

 Avg. Waiting time of Round Robin Algorithm = 109.6

 Avg. Turnaround time of Round Robin Algorithm = 156.2

 Avg. Waiting time of FCFS Algorithm = 110.2

 Avg. Turnaround time of FCFS Algorithm = 156.2

Table 12 (Example 02)

Process Id Burst time Arrival time Priority

P0 12 5 2

P1 24 3 3

P2 44 0 5

P3 23 2 1

P4 9 6 0

Step#1: calculate waiting time and turnaround time for all the
algorithms;

Table 13 (turnaround time and waiting time of algorithm)

 Algorithm HRRRN SJF RR FCFS

P. id BT AT WT TAT WT TAT WT TAT WT TAT

P0 12 5 19 31 48 60 68 112 0 44

P1 24 3 71 95 85 109 69 92 42 45

P2 44 0 68 112 0 44 71 95 64 88

P3 23 2 48 72 63 86 6 76 86 98

P4 9 6 9 18 38 47 34 43 97 106

Total 215 328 234 346 206 418 289 401

Average 48.2 65.6
46.
8

69.2 61.2 83.6 57.8 80.2

Calculations:

 Entered time Quanta = 10

 Avg. Waiting time of Proposed Algorithm = 43.2

 Avg. Turnaround time of Proposed Algorithm = 65.6

 Avg. Waiting time of Priority Algorithm = 55.4

 Avg. Turnaround time of Priority Algorithm = 77.8

 Avg. Waiting time of SJF Algorithm = 46.8

 Avg. Turnaround time of SF Algorithm = 69.2

 Avg. Waiting time of Round Robin Algorithm = 61.2

 Avg. Turnaround time of Round Robin Algorithm = 83.6

 Avg. Waiting time of FCFS Algorithm = 57.8

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 3, March-2021 255
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

 Avg. Turnaround time of FCFS Algorithm = 80.2

VI. RESULTS

Table 14 (Result of Hybrid Scheduling System (preemptive and non
preemptive)

Algorith
m

Example 1 Example 2

Non
Preemptive

Preemptive
Non
Preemptive

Preemptive

Avg.
TAT

Avg.
WAT

Avg.
TAT

Avg.
WAT

Avg.
TAT

Avg.
WAT

Avg.
TAT

Avg.
WAT

Proposed 5.75 * 2.5 * 5.5 1.75*
16.33
*

8.66*
15.6
6

8.0

Normal 6.0 27 5.5 2.2 17.3 9.6 15.6 8.0

The graphical representation is as follows;

Fig 11. Graph of proposed and Novel Algorithm

Fig 12. Graph of proposed and Novel Algorithm

Fig 13. Graph of proposed Algorithm

Fig 14. Graph of Novel Algorithm

 The table and the graphs proves that our selected and
chosen algorithm gave relatively a reduced amount of
average turn around and waiting time as compared to novel
algorithm. [1]

 Moreover our algorithm is similar to SJF with respect to
same arrival time of processes. [1]

 Our algorithm is similar to priority scheduling when TET
priority is considered. [1]

 Our proposed algorithm is a mixture or combinations of SJF
and priority algorithm so it’s defined as hybrid algorithm.
[1]

i. Result of Hybrid Scheduling System Highest Response

Round Ratio Next (HRRRN)Algorithm:
Graphical Representation of Example 1:

Fig 15. Graph of proposed and other algorithm

Fig 16. Graph of proposed and other algorithm

Fig 17. Graph of proposed and other algorithm

The graph clearly shows that the average turnaround time and average
waiting time of our proposed algorithm .i.e. HRRRN is relatively less
as compared to the other self defined scheduling algorithm making
our algorithm more effective in terms of CPU utilization and less
timing. [5]

Graphical Representation of Example 2:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 3, March-2021 256
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Fig 18. Graph of proposed and other algorithm

Fig 19. Graph of proposed and other algorithm

Fig 20. Graph of proposed and other algorithm

The above graph clearly shows that the average turnaround time and
average waiting time of our proposed algorithm .i.e. HRRRN is
relatively less as compared to the other self defined scheduling
algorithm making our algorithm more effective in terms of CPU
utilization and less timing in example 2 as well. [5]

VII. CONCLUSION:

The outcomes of the above examples have shown that the
implementation of “FCFS” gives poor performance, lower throughput
and longer Average Waiting Times because of its simplicity. “SJF” is
the most idyllic scheduling principle in terms of waiting time or
turnaround time of a the associated work or task but the privileged
remedy in SJF for shorter processes are a result in amplified or
enlarged times of waiting for longer processes in contrast with the
FCFS which shows that there is a potential risk of the trapping of
longer processes present in the ready queue due to the simultaneous
consecutive short processes that enters in the queue. “RR achieves fair
sharing of the CPU” but as compared to all of the pre defined
algorithm or proposed algorithm composed of a mixture of HRRN and
round robin gave the best results in terms of average turnaround and
waiting time. Similarly in our first proposed algorithm of preemptive

and non preemptive nature it should comparatively less average time
in contrast to the novel algorithm making is effective in the CPU
scheduling criteria. [4]

VIII. FUTURE SCOPE & USAGE:

The main objective is to avoid deadlock in the system which is are
caused by due to certain conditions such as mutual exclusion, hold and
wait, no preemption and circular wait. These conditions are discovered
as per depending on the systems used most. As the passing time and
the upgrading of the technical and information industry certain new
conditions may evolve causing deadlocks. The approaches of
expanding the algorithms and techniques to handle the upcoming
conditions of deadlock need to be studied and adapted. Ways to
deadlock prevention such as handling, avoidance, detection and
recovery needs to be adapted by more and more systems to increase
efficiency in deadlock handling. The way of deadlock handling which
is called ignoring the problem at all needs to be expanded more as it
completely ignores the deadlock which had occurred Deadlock
prevention methods used for deadlock handling to date are also
needed to be studied and discovered in depth such as the mutual
exclusion, hold and wait, no preemption circular wait. Algorithms
such as resource allocation graph algorithm used for deadlock
prevention must be expanded with new techniques for earlier
deadlock prevention. In the field of simulation accounting further
study required such as in the field of sleeping processes, irregular
process execution other complexities and in I/O bursting. There is a
need to enhance and create a more improved algorithm which will
ensure efficiency in the performance as compared to the other
algorithms. In conclusion there is a necessity to have an in depth or
detailed study regarding the deviation in the field of “process
generation”. This study can be put into practice to provide more
decisive results when arranging algorithms. A more wide approach
can be discovered in the future regarding to the “latest Central
Processing Unit scheduling algorithm” which may possess additional
effectiveness and efficiency than the existing algorithms. Moreover, in
the future the proposed scheduling algorithm will be used in the tasks
that are dependent on each other. The performance of the algorithm
will also be studied and applied on the real time applications where
tasks are to be completed according to the deadlines and have
priorities. [4]

IX. ACKNOWLEDGMENT

We take this occasion to thank GOD ALMIGHTY ALLAH for blessing
us with HIS grace and providing us enough facilities which leads us to
the completion of this research paper. Secondly we show our heartfelt
gratitude towards Brinch Hansen who introduced the algorithm
“HRRRN” to avoid the limitation and constraints of shortest job next
(SJN) algorithm. Thirdly we show our admiration to Anil Kumar
Gupta who proposed the novel scheduling. Lastly we would thank our
writing associate and parents for helping us for the existence of this
research paper.

X. REFERENCES:

[1] G. G. Abraham Silberschatz, operating system concepts, Donnelley
Jefferson City: John Wiley & Sons, 2011.

[2] R. C. Holt, "Some Deadlock Properties of Computer System,"
Computing Survey, vol. IV, no. 3, 1972.

[3] M. A. M. A. Sultan Almakdi, "Simulation and Performance

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 3, March-2021 257
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Evaluation of CPU," International Journal of Advanced Research in
Computer and Communication Engineering, vol. IV, no. 3, pp. 1-6,
2015.

[4] A. K. Gupta, "Hybrid CPU Scheduling Algorithm," International
Journal of Computer Science and Information Technologies, vol. VI, no.
2, pp. 1569-1572, 2015.

[5] A.K.Solanki, "Performance Evaluation of CPU Scheduling by Using
Hybrid Approach," International Journal of Engineering Research &
Technology, vol. I, no. 4, pp. 1-8, 2012.

[6] International Journal of Modern Engineering Research , vol. II, no. 6,

2012.

[7] S. M. Y. U, "Simulation of CPU Scheduling," vol. II, 2000.

[8] "“CPU Scheduling: A Comparative study," National Conference on
Computing for Nation Development, pp. 587-589, 2011.

IJSER

http://www.ijser.org/

